Predictive Density Estimation for Multiple Regression
نویسندگان
چکیده
Suppose we observe X ∼ Nm(Aβ, σI) and would like to estimate the predictive density p(y | β) of a future Y ∼ Nn(Bβ, σI). Evaluating predictive estimates p̂(y | x) by KullbackLeibler loss, we develop and evaluate Bayes procedures for this problem. We obtain general sufficient conditions for minimaxity and dominance of the “noninformative” uniform prior Bayes procedure. We extend these results to situations where only a subset of the predictors in A is thought to be potentially irrelevant. We then consider the more realistic situation where there is model uncertainty and this subset is unknown. For this situation we develop multiple shrinkage predictive estimators and obtain general minimaxity and dominance conditions. Finally, we provide an explicit example of a minimax multiple shrinkage predictive estimator based on scaled harmonic priors.
منابع مشابه
Trip pattern of low-density residential area in semi urban industrial cluster: predictive modeling
This research elucidates the trip pattern of the low-density residential zone in a semi-urban industrial cluster of southwestern Nigeria. These sets of dwellers are often times neglected in the transportation planning process with the view that it is not a residential zone. Domiciliary information gathering procedure was employed in the analysis with 0.82 return rates. It was backed up with the...
متن کاملDevelopment of New Predictive Equations to Estimate Basal Metabolic Rrates in Iranian Adults: A Study Protocol
Background and Objectives: Studies indicate over-estimation of basal metabolic rate (BMR) using common equations for the Asian people. The present study aims to develop new predictive equations for the Iranian people and to compare these equations with commonly used formulas. Materials and Methods: Total, 150healthy subjects aged 18-60 yrare invited to the Laboratory of Nutrition Research, Nat...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملExact Minimax Predictive Density Estimation and MDL
The problems of predictive density estimation with Kullback-Leibler loss, optimal universal data compression for MDL model selection, and the choice of priors for Bayes factors in model selection are interrelated. Research in recent years has identified procedures which are minimax for risk in predictive density estimation and for redundancy in universal data compression. Here, after reviewing ...
متن کاملBayesian Curve Fitting Using Multivariate Normal Mixtures
Problems of regression smoothing and curve fitting are addressed via predictive inference in a flexible class of mixture models. Multidimensional density estimation using Dirichlet mixture models provides the theoretical basis for semi-parametric regression methods in which fitted regression functions may be deduced as means of conditional predictive distributions. These Bayesian regression fun...
متن کامل